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We identify a family of phase transitions found for post-error-correction Bit-Error-Rate (BER)
of finite-size Low Density Parity Check (LDPC) code approximated by a tree-like structure. The
problem of testing an LDPC code performance is re-formulated in terms of statistical mechanics
as an intergal over noise realizations on a graph. The integral is approximated by the sum over
different symmetry saddle-point solutions (instantons). Different phases, related to different values
of the Signal-to-Noise-Ratio, correspond to different instanons that dominate the integral for BER.
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Last fifty years have witnessed a tremendous increase
of amount of data being transmitted through various
communications systems. Although data flow through
these systems has increased tremendously, a major con-
cern is the ability to ensure error-free data transfer in the
presence of noise and other impairments during transmis-
sion. The problem of dealing with errors in information
transmission has fundamental importance and has been
studied extensively in information theory and coding the-
ory. In 1948 Shannon [1] has proved that applying an
Error-Correcting Code can result in an error-free com-
munication in the thermodynamic limit of an infinitely
long word, as long as the rate of transmitted informa-
tion is kept below the channel capacity. Constructing
good and practical capacity-approaching codes has been
a challenge until the discovery that long Gallager codes
[2] can achieve near-optimum performance when used for
transmission over white additive Gaussian noise channels
[3]. In the past few years several codes were designed
with performances very close to this limit [11]. Generally,
these codes are referred to as codes on graphs, and their
prime examples are Low Density Parity Check (LDPC)
codes and turbo-codes. Also, a significant insight into
iterative decoding was gained due to its interpretation
in terms of message passing and belief propagation in
graphical models. Most of LDPC codes are based on
random constructions of the coding maps, however, it
has been also shown [4] that regularly structured LDPC
codes (that have a natural advantage of being memory
effective and simpler to build) can be performing com-
parably well. Another major recent development is as-
sociated with reformulating the error-correction problem
in terms of statistical mechanics [5], which stimulated a
fresh flow of analogies and new exciting ideas and analo-
gies. (See e.g. [6–8].) However, the new approach has
mainly focused on comprehensive analysis of the thermo-
dynamic (infinite code length) limit, whereas describing
the phenomena related to realistic finite-size codes has

attracted much less of attention.

Performance of any finite-size error-correcting code is
measured in terms of the dependence of the post error-
correction Bit-Error-Rate (BER) on the Signal-to-Noise
Ratio (SNR). Error correction aims to decrease the BER
by adding redundant information (overhead) to infor-
mation messages. The smaller the post error-correction
BER is for fixed overhead, the better. Any new gener-
ation of communication devices creates a new challenge
for the error-correction technology as it sets higher stan-
dards for the channel capacity thus lowering the level
of BER which can still be tolerated. Straightforward
Monte Carlo numerical simulations constitute an efficient
method only for the values of BER ∼ 10−7 or higher,
and it falls short in accessing lower values of BER. Ex-
perimental tests are extremely expensive, thus frequently
impractical, since they require building a special device
prototype for any new suggested coding/decoding strat-
egy. This implies that finding efficient practical ways
of extremely low BER evaluation is under universal de-
mand. Our main objective is constructing a theoreti-
cal tool capable of delivering quantitative estimates for
these low probability events analytically. The approach
we propose to adopt and develop for achieving this goal
is known under the names of saddle-point, optimal fluc-
tuation, or instanton calculus. This method, aiming to
estimate a low probability event, is common in modern
theoretical physics, introduced initially in the context of
disordered systems [9].

The letter is organized as follows. We start with a
general and brief introduction to the subject: We de-
scribe the basic principles of coding for an LDPC code,
introduce the optimal Maximal-A-Posteriori (MAP) de-
coding strategy along with generally suboptimal yet very
efficient Belief Propagation (BP) decoding, and finally
define the post-error correction BER that character-
izes the code performance. Next we argue, following
[3, 7, 8, 10, 11], that a finite-size tree-like structure offers
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a good approximation for an LDPC code if the length of
the shortest loop on the corresponding Tanner graph is
long enough. We further focus on the BER computation
for the central site on the tree, presenting it as an integral
over noise configuration (fields) on the tree. Instantons
– special configuration of the field giving the major con-
tribution into the integral – are first found numerically
through complete variational procedure. It is shown that
all the relevant instantons, all of different symmetries,
can be characterized in terms of partially colored Tan-
ner graph. Finally we describe the main result of this
letter, namely a sequence of phase transitions, between
phases/instanotns of different symmetries, emerging for
BER with the SNR change.

In the case of binary linear block coding the error
correction consists of: (1) coding the original message
(word) represented as a set of L Boolean, ±1, symbols
into a longer word consisting of N Boolen signals; (2)
transmitting the N bit long codeword through a noisy
channel; (3) decoding the corrupted message detected at
the output. Any binary linear code can be conveniently
described by its Tanner graph, consisting of N variable
nodes (marked by Latin indices) that correspond to the
bits of the transmitted message and M = N − L > 0
checking nodes (marked by Greek indices) that repre-
sent the parity checks, and the connections occur between
those bits j and parity checks α so that the bit j partici-
pates in the parity check α, i.e. j ∈ α. (In this represen-
tation all the parity checks should be linearly indepen-
dent.) More formally, σ = (σ1, · · · , σN ) with σi = ±1
represents one of 2L code words if and only if

∏
j∈α σj = 1

for all the checking nodes, α = 1, · · · , M . The code re-
dundancy is described by the overhead M/L = R−1 − 1,
with R = L/N < 1 being the code rate. Transmitted
through a noisy channel a code word gets corrupted due
to the channel noise, so that at the channel output one de-
tects, x 6= σ, where in the simplest model case of the ad-
ditive white Gaussian channel considered here x = σ+ϕ,
〈ϕ〉 = 0, 〈ϕiϕj〉 = δij/s2, where s measures the SNR.

The goal of decoding is restoring the best approx-
imation for the original message from a corrupted
word. Optimal decoding, also known under the name
of Maximal A Posteriori (MAP) Symbol decoding,
can be represented in terms of the generating func-
tion of an effective “spin” model: exp[−F (h)] =∑
σ

∏M
α=1 δ

(∏
j∈α σj , 1

)
exp

(∑N
k=1 hkσk

)
, where the

“external magnetic field” h is related to the channel noise
ϕ, h = s2(1 + ϕ), δ(x, 1) is the Kronecker δ-symbol
and the ”magnetization”, defined as ψj(h) ≡ 〈σj〉 =
−∂F (h)/∂hj , is interpreted as the result of decoding, or
more accurately sign[ψj ] gives the decoded value for the
bit j. The code performance can be characterized via the
density of errors at the given site j known as the post-
error-correction BER that can be also described as the

probability of a spin flip:

Bj =

0∫

−1

dζ

∫
dh δ (ψj{h} − ζ)

N∏

j=1

f(hj), (1)

where f(x) ≡ exp[−(x − s2)2/(2s2)]/
√

2πs2 and σ = 1
is assumed for the codeword input. (Due to the linearity
and homogeneity of the code with respect to the per-
mutation of the code words, BER defined for any other
initial codeword would be exactly equal to the one given
by Eq.(1).)

MAP decoding is optimal, however, inefficient,
since it requires an exponentially large number of
2L steps. BP decoding [3, 10] constitutes a fast
(linear in N) yet generally approximate alterna-
tive, corresponding to replacing generating function
in MAP by solving the following set of nonlinear
equations (hereafter referred to as the BP equations)
ηjα = hj +

∑j∈β
β 6=α tanh−1

(∏i∈β
i 6=j tanh(ηiβ)

)
, ηj = hj +

∑j∈β
β tanh−1

[∑i∈β
i6=j tanh(ηiβ)

]
, where tanh−1(ψj) ≡ ηj .

Iterative solution of the BP equations truncated at a fi-
nite step is known as Message Passing (MP) algorithm.
As shown in [10] the set of BP equations becomes exactly
equivalent to MAP in the loop-free approximation. Us-
ing physics jargon, it is equivalent to the Bethe-lattice ap-
proximation [12]. This basic approximation involves gen-
erating a tree with the number of generations, counted
from the central variable node to be equal to the shortest
loop length on a realistic graph. Note that for Gallager
codes the typical length of the shortest loop is estimated
as ∼ ln N [11]. Although the method of BER computa-
tion proposed in this letter is generally applicable for any
kind of codes, we will focus solely on the regular codes for
which each variable node participates in m ≥ 2 checking
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FIG. 1: m = 2, l = 3, n = 3. Symmetry instantons and
bifurcation picture for complete optimization procedure (no
symmetry was a-priori) assumed. On the first line area of
a circle surrounding any variable node is proportional to the
value of the noise on the node. Different colors correspond to
different generations on the tree.
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node, and each checking node constraint includes l ≥ 3
variable nodes, with l > m.

The set of the δ-functional BP constrains, leads to es-
sential complication in the generic case resulting in a non-
trivial statistical mechanical model. However, in the tree-
like case (no loops) the constraints become fairly easy to
handle. Indeed, in this case each variable site can be de-
scribed by one “inbound” field ηjα with the checking site
α belonging the only path from the given variable site to
the tree center, and the other m − 1 “outbound” fields
ηjβ with β ∈ j and β 6= α. It is a remarkable feature of
the tree structure that the integrand in Eq.(1) can be ex-
pressed solely in terms of the “inbound” fields on the tree
and only “outbound” field defined exactly in the center
of the tree. Therefore, the only nontrivial integrations go
over the “inbound” fields, hereafter denoted by simply ηj ,
and Eq.(1) is simplified: B0 =

∫ 0

−1
dζP0(ζ) ∼ P0(0) and

P0(ζ) =
∫

(
∏
j

dηj) exp(−Q), where the effective action is

Q ≡ 1
2s2


ζ −

∑

β∈0

tanh−1




k∈β∏

k 6=0

ηk


− s




2

+
1

2s2

∑

j 6=0


ηj −

β>j∑

β∈j

tanh−1




k∈β∏

k 6=j

ηk


− s2




2

, (2)

and j = 0 marks the tree center, β > j denotes that the
check node β is positioned above the variable node j in
the tree hierarchy.

Integrations over noise fields ηj will be performed in
the saddle-point instanton fashion, that corresponds to
the assumption that the major contribution to the in-
tegral originates from the special (instanton) configura-
tions related to the minimum of the effective action Q:
δQ/δη = 0. Alternatively, one can solve the BP equa-
tions on the tree using the MP algorithm (i.e. making
some fixed number of iterations), substitute it into the re-
sulting expression for the magnetization/BER, and max-
imize it with respect to the noise field. The two varia-
tional schemes should be equivalent in the limit of infinite
number of iterations in the MP case (we found the con-
vergence with the number of iterations to be relatively
fast and monotonic in the loop-free case). The result of
the MP variational procedure for m = 2, l = 3, the num-
ber of generations on the tree n = 3, and 10 iterations
is shown on Fig. 1. Full variation over all noise fields
on the tree (thus containing no symmetry assumption)
shows rich bifurcation picture corresponding symmetry
breakdown. At small values of SNR the optimal solu-
tion is of maximal symmetry with all noise fields that
belong to a given generation (counted from the tree cen-
ter) being identical. With SNR increase the symmetry
of the optimal configuration degrades discreetly through
n steps. The symmetry of the k-th order instanton can
be described by a set of variable nodes (marked striped

on Fig. 1) that extend from the center (which is always
striped/marked) towards the k-th generation according
to the following rule: All checking nodes connected to a
marked variable node of previous generation are marked,
while for any marked checking node exactly one vari-
able node of the next generation is marked. The rule is
generic, i.e. it applies for any values of m and l.

Taking the symmetry assumption as granted one can
substantially simplify and improve the process of find-
ing the set of instanton solutions and getting a better
estimate for BER. Thus the independent fields that cor-
respond to an instanton with the symmetry broken up
to the k-th order can be conveniently represented in
terms of the two-index quantities η

(p)
j using the follow-

ing agreement. The variable η
(p)
j , where p = 0, · · · , k

and j = 0, · · ·n − 1 − p, represents the field on a non-
marked node located in generation j (counting from the
leaves), so that the first marked node on the only path
to the center lies in generation p (counted from the tree
center). The variable η

(p)
n−p with p = 1, · · · , k represent

the field on a marked node that is located in the gen-
eration p (counting from the center). Replacing the full
set of the η-fields on the graph by the described above
restricted symmetry set {η(p)

j }, substituting it into the
effective action Q described by Eq.(2), and minimazing
the resulted k-th order effective equation with respect to
the k-th order restricted set of η fields one arrives at a
system of equations that the k-th order instanton that
are bulky and are not presented here. The set of equa-
tions for the k-th instanton can be formulated in terms
of a k + 1-dimensional minimization problem. We have
found, however, that the system can be approximately
reduced to a one-dimensional chain minimization prob-
lem if either of the following conditions holds: (i) l À 1;
(ii) n, n − p À 1 and s > sc, where sc is defined as
such s which formally solves the system, η = g(η) and
1 = g′(η) where g(η) = s2+(m−1) tanh−1

(
tanh

(
ηl−1

))
;

(iii) s À sc. Note, that in the thermodynamic limit ac-
tion of the high-symmetry instanton, which is finite at
s < sc becomes infinite at s > sc, with sc being finite
for m > 2. In all three cases the instantons have the
following structure: The unmarked variables η

(p)
i with

p > 0 grow while approaching the center according to
the equation η

(p)
j = g(η(p)

j−1), whereas for the marked vari-

ables η
(p)
n−p ≈ 0. Therefore, the only dynamical field to be

optimized is the unmarked portion of the p = 0 branch.
Note, that although the approximation is justified only
in either of the three aforementioned limits, it actually
works quantitatively well even for the moderate values
of the key parameters l, m, n, s, as follows from compar-
ing the numerical solutions of the full (i.e. making no
a-priori symmetry assumptions), k + 1-dimensional and
approximate 1-dimensional minimization problems.

Within the instanton approximation BER is estimated
as B0 ∼

∑n
k=0 Nk exp[−Q(k)]ck, with Q(k) being the ac-
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FIG. 2: m = 4, l = 5, n = 4. Comparative plots of BER (full
sum, but the phase volume factors were not counted: cp ≈ 1)
and individual instanton contributions, calculated within the
single-chain approximation, vs SNR.

tion of the k-th order instanton. The combinatorial factor
Nk with N0 = 1 and Nk = m(m−1)k−1(l−1)k accounts
for the symmetry-induced instantons degeneracy. The
phase space volume ck occupied by a given instanton ac-
counts for Gaussian fluctuations in the neighborhood of
the instanton solution. Calculating ck that constitutes an
important yet difficult task is postponed for future stud-
ies. In any of the three asymptotic limits (i-iii) mentioned
above the sum in the definition of BER is dominated by
a single instanton contribution that determines the rele-
vant SNR phase. Moreover, in either of the three limits
the value of the instanton action dominates the contri-
bution, with both the combinatorial Np and the phase
space cp factors related contributions being sub-leading.
For the lowest SNR values the major contribution to BER
originates from the most symmetric instanton. With the
SNR increasing the system experiences a series of phase
transitions from Q(0) to Q(1), Q(2), etc. to Q(n) that take
place at s1 < s2 < · · · < sn+1 respectively. Note, that at
n →∞ an infinite sequence of sk, with k < n, converges
to sc from below. In the case of a finite tree shown in
Fig. 2 the transitions are not that sharp (especially those
corresponding to relatively low values of SNR), yet still
recognizable.

Emergence of the sequence of instan-
tons/phases/transitions reported above can also be
understood intuitively: If the noise is large correlations
between the noise values on different nodes are weak,
thus no symmetry breaking (marked) structure on
the Tanner graph is possible and therefore the most
symmetric noise configuration is optimal. The corre-
lation length growth due to the SNR increase leads to
developing a preferred/marked structure that breaks the
full symmetry. The structure grows from the tree center

towards the leaves, simply because the tree center is
chosen for the local measurement of BER. In the extreme
case of large SNR the symmetry brake down is obviously
associated with the structure of the code word closest
to the original one, thus making the logarithm of BER
to be proportional to the Hamming distance between
the two special codewords, and also rationalizing why
(for any instanton solution) the marked structure locally
resembles the structure of the next to original code word.
Note also, that emergence of a finite correlation length
(on the graph) growing with the SNR increase suggests
that the tree approximation works well for a finite LDPC
code as long as the correlation length is short compared
to the length of the shortest loop on the LDPC graph.
Thus, the no-loops/tree approximation is perfectly jus-
tified for at least some number of low SNR phases. For
the higher SNR phases the approximation may still be
reasonable, however, resolving this challenging question
requires going beyond the tree approximation. We
conclude with noting that emergence of the sequence of
transitions suggests a substantial flattening of the BER
dependence on SNR at moderate values of the latter.
This observation may have an interesting relation to the
error floor phenomenon reported for the Frame (code
word) Error Rate [13], and that the “near codewords”,
which are claimed to be giving the major contribution
to the error floor phenomenon [14], are reminiscent of
the instantons with partially broken symmetry.
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